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Outline

• The Problem
– Enabling Responsive Space
– Suggested Solutions

• Aero-Assist

• Solution
– Waverider vehicle

• Technological Needs
• Performance
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Known Fixed Orbits

•Easy for hostile forces to predict the 
footprint of orbiting platform

•DoD has long sought a space-plane

•Space Shuttle can change inclination  
only by few tenths of a degree

•Craft with high on-orbit agility would enable
- Rescue
- Repair
- Return
- Recycling

•Multiple-objective missions
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Responsive Space…What is it?

• Responsive – Ready to launch within hours of call-up and to conduct 
military operations within hours of reaching orbit

• Maneuverable – Have maneuverability to rapidly achieve any Earth-
centered orbit

• Operable – Must be reliable, supportable, maintainable, and robust to 
generate required mission rates

• Economical – Cost-effective to carryout DoD missions
• Survivable – Execute mission in spite of threats
• Interoperable – To maximum extent, be interoperable with joint and 

allied; operations concept, command and control concepts, equipment, 
and facilities

• Flexible – Capability to support variety of payloads to multiple theaters 
with conflicting and simultaneous requirements

• * 2001 AFSPC ORS MNS
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Orbital Agility Comes at a Price

• “ΔV” required for orbital plane change is large

• Re-tasking satellite “Propulsively”Lowers 
usable lifetime by 50-75%

Space Shuttle can change 
inclination only by a 
fraction of a degree

• Most efficient method is ‘aero-assisted”
maneuvering … Use Lift Vector

• L/D ~3 capable of global reach
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Key Needed (Enabling) Technologies

1) High L/D Hypersonic Airframe Configurations

2) Sharp Leading Edges and High Temperature 
Leading Edge Material

3) Precision Restartable, Deep-Throttled Orbital 
Maneuvering Engines
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“Tickling the Tail of the Dragon”
• To obtain aero-plane change in strategically 
meaningful time space craft must“hover” near 
orbit collapse point

• Trying to perform maneuver “open-loop”
Would be very risky at best -- Catastrophic 
at worst
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Orbit Stabilization:

• Modulate the engine thrust so that Orbit energy is 
maintained at a Predetermined Safe level
-- orbital energy added by the thrust modulation 

near orbit perigee has the effect returning the orbit 
apogee to its initial condition
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Why Waveriders?
• Waveriders appear to be the only craft capable of performing  

hypersonic maneuvers at sufficiently high Lift-to-drag ratios

•Conical power law design

• Modified to provide control 
authority
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Waverider Aerodynamic Model

• 6-DOF data bases generated using incidence angle 
techniques
i) Modified Newtonian flow for stagnation region
ii) Taylor-Maccol (tangent cone) for 3-D conical sections
iii) Oblique Shock wave (tangent wedge) used for

2-D surfaces (flaps)
iv) 2-D Prandtl-Meyer expansion based on local incidence 

used for surface element with incidence angle > 90 deg
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Control Surfaces Affecting Stability 
Derivatives

•Flaps effective below angle of attack of 3 degrees
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Control Surfaces Affecting Stability Derivatives

•Sufficient control authority for ±5 degrees of beta

•Representative case from DSMC analysis

δCn/δβ<0
(un-stable in yaw)

δCl/δβ<0
(stable in roll)
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Lift/Drag and Pitching Moment

• Includes profile, skin drag, and blunt leading edge 
drag corrections
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Liquid Propulsion System

• Multiple Restarts
• Throttle

LOX/CH4

N2O4/MMH

LOX/ C2H6

N2O4/ C2H6

N2O/ C2H6
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Possible Propellant Choices
Propellants Optimal 

Mixture 
Ratio

To, Ideal Isp, Actual

LOX/CH4 3.25:1 3423.84 °K 364.67 sec

N2O4/MMH 2.20:1 3303.88 °K 329.47 sec

LOX/ C2H6 3.00:1 3491.05 °K 360.10 sec

N2O4/ C2H6 4.70:1 3309.98 °K 331.873 sec

N2O/ C2H6 9.00:1 3270.21°K 316.52 sec

*Results generated using CEA
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Volume or Mass Limited Propellants

LOX/CH4 has Isp=365 sec

•N2O4/MMH has Isp=330 sec

•Advantage of storability

Propellants (10000 kg)
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Precision Deep-Throttle Closed Loop Engine 
Demonstration 

• Key to orbit Stabilization is the ability to maintain constant
Orbital energy a0

a ΔV
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Deep-Throttle Rocket Engines

• In theory rocket engine 
motor can be throttled back 
until the throat is no longer 
sonic by reducing propellant 
Flow rate (injector pressure)

• Difficult problem in
practice. 
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Deep-Throttle Rocket Engines
(cont’d)

• Essential for pressure drop across injector 
> 25% of chamber pressure

-- Pressure ratio insures propellant flow rates 
are independent of fluctuations in chamber pressure.  

• Fixed geometry injectors
Reduction of Propellant flow rates causes injector pressure 
to drop faster than the chamber pressure 
… until injector pressure becomes so low that coupling between 
chamber and propellant feed system occurs 
… causing combustor instability (a.k.a explosion or flameout)
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Each Aero-pass will require a different level 
of thrust to complete the maneuver
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Simulation of an Unsteady Liquid Rocket 
Combustion (50% Throttle)

Above 
stability 
limit 1.25

N2O4/MMH

engine
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Simulation Panel
• Interactive 3-DOF Simulation used to perform analysis

• Interactive
simulations
allowed a wide
variety of
trajectories
to be analyzed
and compared for
the 4 configurations

• Joystick allows for
Pitch, roll, and yaw,
throttle inputs to be 

commanded
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Example I: Arrival Times

• Fixed Orbit

• Aeroassist
Modified orbit
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Example II: Arrival Times

• Fixed Orbit

• Aeroassist
Modified orbit
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Conclusion

• A properly configured waverider will be 
capable of flight

• If equipped with a propulsion system then 
an aero-assist maneuver is possible

• Waveriders can help enable responsive 
space
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Future Work

• Thermal Modeling
• Solid Modeling
• Mass Budgets

• Hybrid Propulsion 
System

twall

Αwall
  

RCC skin

FRSI TPS

Interior Wall
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(Avcoat) 
Coating 
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Questions?
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Backup Slides
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High L/D Orbital Vehicles

L/D

Hypersonic

Comparison of hypersonic L/D for 
four wing-body reentry configurations
to theoretical predictions (modified
Newtonian flow).

Slender Hypervelocity
Aero-thermodynamic 
Research Probe

“Ultra-High-Temperature
Ceramics” (UHTC)

SHARP Space 
Plane Concept

• L/D > 3 capable of global reach
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Perigee Collapse
• Key to maintaining stable orbit at very low perigee altitudes
is to keep orbit apogee out of the “danger zone” just above the
“Knee in the curve”
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"danger zone"

"safe zone"

"collapse zone"

"Knee" of the curve

• If the perigee stays above the “knee”
then there is enough orbital energy to
Maintain at least one more orbit

• Task here is to design a regulator
that modulates the engine thrust
to keep us “in the green” where perigee
altitude is relatively constant
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Ways of Enabling Responsive Space

• Earth launch means
– F-15 MSLV study

• Space based means
– Propulsion example

• Fuel cost
• Or time cost for ion 

drives (low thrust)

– Aero-assist example
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Wave Rider Leading Edge Drag Correction

R: radius of blunted leading edge
L: length of body
W: half-width of body

• Does not include
effects of control surfaces
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Propellant Volume Comparison

Propellants 
(10000 kg)

Mass 
Mix. 
Ratio

Oxidizer 
Mass

Oxidizer  
Volume, 
(m3)

Fuel Mass Fuel Volume, 
(m3)

Total 
Volume
, (m3)

LOX/CH4 3.25:1 7647 kg 6.703 2353 kg 4.126 10.828

N2O4/MMH 2.20:1 6875 kg 4.764 3125 kg 3.55 8.315

LOX/ C2H6 3.00:1 7500 kg 6.573 2500 kg 5.382 11.955

N2O4/ C2H6 4.70:1 8246 kg 5.714 1754 kg 3.777 9.491

N2O/ C2H6 9.00:1 9000 kg 8.483 1000 kg 2.153 10.635
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Propellant Mass Comparison

Propellants (10 
m3)

Volume 
Mix. 
Ratio

Oxidizer 
Mass

Oxidizer 
Vol(m3)

Fuel Mass Fuel 
Vol(m3)

Total Mass

LOX/CH4 1.62:1 7062 kg 6.189 2173 kg 3.811 9235 kg

N2O4/MMH 1.34:1 8268 kg 5.730 3758 kg 4.270 12026 kg

LOX/ C2H6 1.22:1 6274 kg 5.498 2091 kg 4.502 8365 kg

N2O4/ C2H6 1.51:1 8688 kg 6.021 1848 kg 3.979 10536 kg

N2O/ C2H6 3.94:1 8462 kg 7.976 940 kg 2.024 9402 kg
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Mixture Ratios
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Propellant Isp Vs Volume

290
300
310
320
330
340
350
360
370

LOX/CH4 N2O4/MMH LOX/ C2H6 N2O4/
C2H6

N2O/ C2H6

10,000 kg mass

Is
p 

(s
ec

)

0
2
4
6
8
10
12
14

V
ol

um
e 

(m
^3

)

Isp, Actual (33,000 lb thrust engine) Total Volume, (m3)



Patrick Jolley - Industry Day
30 January 2007

37

Propellant Isp Vs Mass
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Exploitation of High Orbital Agility
• Emphasis on the ability to develop a high level of on-orbit 
“agility” – the ability to rapidly, inexpensively, and safely 
change orbits. 

• Enhanced agility includes the ability to alter not only orbital
apogee and perigee 

-- a task that is routinely accomplished today 

• But also develops the ability to systematically change the 
orbital inclination and right ascension

-- a task that is NOT routinely accomplished today

-- Space Shuttle can change inclination  only by few tenths of a degree
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