Handheld Texel Camera (continued)

Prototype Development

Based on the successful demonstration of technology, a prototype design was initiated. The desire was to have a complete integrated unit which would incorporate the Canesta camera and the CMOS camera. The two cameras needed to be co-boresighted to eliminate any parallax issues as this is intended for fairly short range use. Some modifications were made to the Canesta development unit and a support structure was designed which would fix the two cameras together as well as hold the cold mirror used to co-align the cameras. The cameras are arranged so their nodal points coincide. Essentially the two cameras appear to be looking from the very same point of regard. Mechanical drawings for this design are shown in Figure 2.

Figure 2: Mechanical design for prototype handheld Texel camera

Operationally, the two cameras are co-boresighted and co-aligned. Three dimensional point cloud data will be captured by the Canesta camera while visual texture data will be captured simultaneously by the CMOS camera. Both cameras operate in a “snapshot” mode where all points and pixels are captured simultaneously. Software has been developed which controls the cameras and capture process. As all pixels are captured in a “flash” operation, multiple frames can be captured in rapid succession leading to the possibility of a “Texel video camera”. The prototype unit has been completed and implemented. Pictures of the unit are shown in Figure 3 below.

Figure 3: Prototype handheld mobile Texel camera

Product Development

Based on the success of the proof of concept, and on the prototype implementation, design is beginning on a fully integrated handheld Texel camera. The implementation will take a bare Canesta sensor and a bare CMOS sensor and integrate them into a compact fully aligned and co-boresighted unit. The handheld can be used in a stationary mode where it successively images adjacent regions, but it is intended to be used in a more freeform mode where the user would snap 3D pictures while holding the camera. This process will generate a large number of “snapshots” and a very large amount of data, much of it redundant and overlapping. We are currently developing the algorithms and software which will enable point cloud matching and data weeding and filtering which will make it possible to generate fully integrated three dimensional models of objects and environments. With continued integration and development, the cost of these handheld Texel cameras will eventually fall to very low levels, making them suitable for consumer markets. This will open up new markets and revenue sources for the Texel camera technology.